CNC takes machine shops to new levels

CNC takes machine shops to new levels

CNC machines and CAM software enable advanced milling techniques

April 14, 2020By Christopher Tate

I had the privilege of learning the machining craft at my family's machine shop. It was a true mom and pop shop where we made anything that would pay the bills. As orders grew larger and parts became more complex, it was clear that our future would depend on successfully integrating CNC equipment into our shop. In 1995, we purchased our first machining center: a small one without any options.

Buying it launched our shop to the next level. Five weeks after receiving the machine, we ordered another just like it. I programmed them with a pencil, paper and a calculator, typed codes into the controls and stored all programs in the machine tool controls. We used edge finders and indicators to set parts and measured tool lengths by touching parts with each tool. Compared with today's technology, our methods were crude.

Machining centers and techniques have advanced at a fast pace since I started programming and operating CNC machines. A few significant improvements have transformed the machines into what we use today, enhancing shop and machinist efficiency.

Need for Speed

Our first CNC machine was capable of only a 7,500-rpm spindle speed. Although machines were available with higher-speed spindles, those machines were expensive and rarely found at small shops.


Mitsubishi Hitachi Power Systems Americas has several machining centers (right) with features like high-torque
spindles and through-spindle coolant. Image courtesy of C. Tate

When we bought our original machines, we would have needed to use some type of ancillary device, such as an air spindle or a geared spindle speeder, to achieve higher spindle speeds. In addition to being costly, spindle speeders were often unreliable and underpowered. Today, it is common for machining centers to have 20,000-rpm spindles.

Spindle speed may sound insignificant, but it has a direct impact on the programmed feed rate of a machine tool. High feed rates usually mean high removal rates and reduced cycle times, making a shop more efficient.

Every programmer should know that rpm multiplied by feed per tooth equals inches per minute. So as spindle speeds increased, more dynamic machine tools were needed.

Our initial CNC machine was not high end but had comparable specifications to many other machining centers on the market. In rapid traverse mode, the machine would travel 10.16 m/min. (400 ipm). In a feed move, the machine could go 6.35 m/min. (250 ipm). Machines today are capable of rapid traverse and cutting feed rates in excess of 60.96 m/min. (2,400 ipm) — six times faster than our machine.

As machining centers have become more dynamic, the use of advanced milling techniques, commonly called high-speed machining, has gained popularity. HSM offers many benefits like reduced cutting forces, extended tool life and large depth-to-diameter ratios, all of which increase milling efficiency. HSM toolpaths are based on maintaining uniform chip thickness across a profile, which requires substantial computing power. Therefore, creating HSM paths without software would be impossible.

Growth of CAM

Few shops 25 years ago used CAM software as we do today. Small shops relied on conversational controls or — like we did at my shop — used brute force by writing G code on paper and then typing that into a control. Even large companies at the time depended on unwieldy systems, such as Automatically Programmed Tool, a cumbersome Fortran-based language that required thousands of hours to master.

CAM software with a graphical user interface transformed programming into an activity like a video game. Programming is so easy that almost anyone can create a simple toolpath after a few minutes of training. Without modern CAM software, HSM toolpaths would not be possible. And we would not have been able to fully capitalize on increased speeds without HSM.

Loading programs and other data into a CNC requires a communication system. At my family's shop, I typically typed programs directly into a control, which was painfully inefficient. We tried to connect a machine to a computer to improve efficiency, but it never worked properly. We abandoned the project after determining that it was too complex for our skill set.

Machine tool controls now come designed to communicate, and connectivity is simple. Most have Cat5 connections and USB ports, and some have wireless connectivity. At least one builder already allows connection and data transfer with a smartphone. Connectivity, data collection and remote interaction with machines will dominate future control development.

Looking ahead, we will continue to see significant advances in communication, connectivity and data transfer. More importantly, I expect more machining and additive manufacturing processes to be combined into a hybrid platform in which a near net shape component is produced with an additive process and fine-tuned with a machining process. Making a part soon may be as simple as saying, "Hey, Siri, make a widget."

Glossary terms in this article

  • machining center
    CNC machine tool capable of drilling, reaming, tapping, milling and boring. Normally comes with an automatic toolchanger. See automatic toolchanger.
  • rapid traverse
    Movement on a CNC mill or lathe that is from point to point at full speed but, usually, without linear interpolation.