Accure·tec AC001 Vibration Damping Adaptor

January 27, 2021
Vibration-Free Milling When Using Long Tools

Walter has introduced the Accure·tec AC001 vibration damping adaptor especially for shell mill mount milling cutters. It delivers increased productivity and stability along with greater surface quality, improved tool and spindle life and is ideal for deep pocket milling in operations at depths of up to 4 x D. 

The vibration damping for this patented system is provided by the axially and radially flexible positioned damper element which is preset at the factory so tools can be used immediately without time-wasting fine tuning. These Accure·tec adaptors are ideally suited for the Walter Xtra·Tec® XT milling cutter range. This makes the system highly versatile. For example, for components with deep cavities in aircraft construction and aerospace industry in general, as well as the automotive, energy, die/mold, and general metalworking industries. Users can benefit from both the vibration damping and a system with low noise levels. 

Accure·tec delivers its advantages of longer tool life, higher productivity, and greater process reliability at depths of cut up to three

times that obtained with conventional methods. Internal coolant further optimizes chip removal. Walter offers Accure·tec with all popular machine interfaces: Walter Capto™, HSK/HSK-T, ISO, MAS-BT, CAT and parallel shank.                                                               

In addition, Walter has announced new sizes to its existing Accure∙tec A3000 boring bar line that incorporates the same technology as the AC001 vibration free long milling tool adaptor. The A3000 is now available in 1.00 in. and 25 mm diameters in steel, as well as 1.00 in. and 1.25 in. diameters in carbide at 10 x Dc. The product extension also includes Capto C4, C5 connections in 25 mm diameter along with HSK-T63 connections in 25, 32, 40, 50 mm diameters. 

Related Glossary Terms

  • boring

    boring

    Enlarging a hole that already has been drilled or cored. Generally, it is an operation of truing the previously drilled hole with a single-point, lathe-type tool. Boring is essentially internal turning, in that usually a single-point cutting tool forms the internal shape. Some tools are available with two cutting edges to balance cutting forces.

  • boring bar

    boring bar

    Essentially a cantilever beam that holds one or more cutting tools in position during a boring operation. Can be held stationary and moved axially while the workpiece revolves around it, or revolved and moved axially while the workpiece is held stationary, or a combination of these actions. Installed on milling, drilling and boring machines, as well as lathes and machining centers.

  • coolant

    coolant

    Fluid that reduces temperature buildup at the tool/workpiece interface during machining. Normally takes the form of a liquid such as soluble or chemical mixtures (semisynthetic, synthetic) but can be pressurized air or other gas. Because of water’s ability to absorb great quantities of heat, it is widely used as a coolant and vehicle for various cutting compounds, with the water-to-compound ratio varying with the machining task. See cutting fluid; semisynthetic cutting fluid; soluble-oil cutting fluid; synthetic cutting fluid.

  • gang cutting ( milling)

    gang cutting ( milling)

    Machining with several cutters mounted on a single arbor, generally for simultaneous cutting.

  • metalworking

    metalworking

    Any manufacturing process in which metal is processed or machined such that the workpiece is given a new shape. Broadly defined, the term includes processes such as design and layout, heat-treating, material handling and inspection.

  • milling

    milling

    Machining operation in which metal or other material is removed by applying power to a rotating cutter. In vertical milling, the cutting tool is mounted vertically on the spindle. In horizontal milling, the cutting tool is mounted horizontally, either directly on the spindle or on an arbor. Horizontal milling is further broken down into conventional milling, where the cutter rotates opposite the direction of feed, or “up” into the workpiece; and climb milling, where the cutter rotates in the direction of feed, or “down” into the workpiece. Milling operations include plane or surface milling, endmilling, facemilling, angle milling, form milling and profiling.

  • milling cutter

    milling cutter

    Loosely, any milling tool. Horizontal cutters take the form of plain milling cutters, plain spiral-tooth cutters, helical cutters, side-milling cutters, staggered-tooth side-milling cutters, facemilling cutters, angular cutters, double-angle cutters, convex and concave form-milling cutters, straddle-sprocket cutters, spur-gear cutters, corner-rounding cutters and slitting saws. Vertical cutters use shank-mounted cutting tools, including endmills, T-slot cutters, Woodruff keyseat cutters and dovetail cutters; these may also be used on horizontal mills. See milling.

  • milling machine ( mill)

    milling machine ( mill)

    Runs endmills and arbor-mounted milling cutters. Features include a head with a spindle that drives the cutters; a column, knee and table that provide motion in the three Cartesian axes; and a base that supports the components and houses the cutting-fluid pump and reservoir. The work is mounted on the table and fed into the rotating cutter or endmill to accomplish the milling steps; vertical milling machines also feed endmills into the work by means of a spindle-mounted quill. Models range from small manual machines to big bed-type and duplex mills. All take one of three basic forms: vertical, horizontal or convertible horizontal/vertical. Vertical machines may be knee-type (the table is mounted on a knee that can be elevated) or bed-type (the table is securely supported and only moves horizontally). In general, horizontal machines are bigger and more powerful, while vertical machines are lighter but more versatile and easier to set up and operate.

  • parallel

    parallel

    Strip or block of precision-ground stock used to elevate a workpiece, while keeping it parallel to the worktable, to prevent cutter/table contact.

  • shank

    shank

    Main body of a tool; the portion of a drill or similar end-held tool that fits into a collet, chuck or similar mounting device.

Additional Products from Walter USA LLC

The drills are coolant-through, straight flute (G-drills), with emulsion or oil and coolant pressure of 145-580 PSI (10-40 bar). They are offered in cylindrical shank configuration and have a 120° point angle with tolerance of m7. They are also offered in L/D ratio of 5 x Dc as standard, with…

The MD173 Supreme is a roughing cutter designed specifically for dynamic milling and for reducing machining time. Its cutting edges equipped with chip breakers enable excellent chip breaking, permitting superior process reliability with high metal removal rates, a plus for users with automated…

A patent-pending, highly textured, multi-layered MT-TiCN layer increases toughness and reduces flank face wear, resulting in lower cost per cutting edge. The inserts’ highly textured Al2O3 layer also minimizes crater wear, and the gold-colored top layer improves wear detection. The gradient carbide…

This grade is now capable of longer tool life, greater reliability, and approximately 30 percent greater performance in stainless steels (ISO M) and heat-resistant super alloys (ISO S), and up to 75 percent greater performance in steels (ISO P) than comparable grades. With the launch phase now…

These new vibration-free tools provide finish machining of precise bores (IT6–IT8) up to 6 × D, with high surface quality and are up to three times more reliable and flexible than comparable models. Their flexibility is boosted by the fact that the new Walter boring tools employ modular components…

With the TC630 Supreme, users can benefit from a range of advantages. A high level of process reliability for unstable machining operations, for example on lathes with driven tools or for long overhangs. Areas of application include medical engineering, precision engineering, the aerospace sector…

Walter has introduced the Xtra·tec® XT M5460, a new profile milling cutter that delivers maximum precision, tool life, and surface quality in precise machining of freeform surfaces and deep cavities.

Walter's new copy turning system for internal machining boosts tool life, cuts tooling costs, and can increase indexing accuracy by 50%.

These indexable turning inserts are designed for applications where a soft cut and high precision is required.  Long tool life is achieved through the WEP10C coated cermet grade with multilayer PVD TiCN TiAlN coating and extra fine cermet substrate grain. Walter's combination of edge…

The WNN15 grade delivers outstanding process reliability and long tool life, even at extremely high cutting speeds. This means that it makes indexable insert drilling more cost-effective than comparable PCD tools with immediate effect. The indexable insert drills offer the advantage of multiple…

PRODUCTS

11/20/2024
Jorgensen Conveyor and Filtration Solutions, Mequon, Wisconsin, highlighted its distinctive…

10/23/2024
The Starrett AVR400 offers full CNC capabilities including X-Y-Z positioning and comprehensive zoom…

10/23/2024
TIN Coated Thread Gages have high dimensionally stable HSS construction with TIN coating that…