Why Y?

Why Y?

Sept. 25 marked 39 years to the day since I first stood in front of a Hardinge hand screw, scratching my head over the knobs and handles and wondering what I'd gotten myself into. To say that machine tools have improved since then is like saying this year's computers are only slightly more powerful than those of a decade ago or that salted caramel ice cream is marginally more flavorful than vanilla. Today's machine tools rock.

September 28, 2018By Kip Hanson

Sept. 25 marked 39 years to the day since I first stood in front of a Hardinge hand screw, scratching my head over the knobs and handles and wondering what I'd gotten myself into. To say that machine tools have improved since then is like saying this year's computers are only slightly more powerful than those of a decade ago or that salted caramel ice cream is marginally more flavorful than vanilla. Today's machine tools rock.

Take flexible manufacturing systems, the machining equivalent of a fast-food restaurant but one that makes far higher-quality food. There are Swiss-style lathes that turn, mill, drill and now laser-cut parts in a single operation, parts that would once have needed hand screws, Bridgeports and drill presses to complete. A similar situation exists with hybrid lathes and mills, which can add material almost as quickly as they remove it. Does this mean no more scrap?

But what really gets me are Y-axis machines. Live tooling and C-axis lathes have been around for decades, but it wasn't until builders added that fourth axis that things got interesting. Suddenly it was super-easy to mill square pockets on round parts and drill off-center holes, operations that the turning department once relied on the milling department to perform.

As my good friend Yusuf Venjara, the former general manager of engineering for the now-defunct Hitachi Seiki, once said, roughly two-thirds of all turned parts require secondary milling operations, and a Y-axis takes care of a big chunk of them. Why wouldn't someone want this capability?

There's something else, however, that neither Yusuf nor the other machine tool experts anticipated when these machines were introduced: their cutoff capabilities.

As you might have guessed, I'm an old lathe guy. I've fought with cutoff tools since my hand screw days—we used hand-sharpened HSS blades back then—to the point that I gradually developed a love-hate relationship with cutoff tools. They're like a hunting dog with poor eyesight—they get the job done eventually, but you wish they'd move a little faster.

Enter Y-axis parting. It's said to be three times faster than a traditional X-axis cutoff tool. I'm not naming the manufacturer, but I'm sure that Google can find it if you're interested. Take a look at the video. I probably watched it 10 times before I figured out just what the heck they are doing. One thing is for sure: Those Swedes are clever people, which as a Norwegian I have a hard time admitting.

Anyway, if you're lucky enough to have a Y-axis lathe, I encourage you to check that out. It's just one more example of how great it is to be in manufacturing right now and how technology enables even better technology, not unlike Moore's law, which states that computing power doubles every 2 years. Machine tools haven't quite kept up with this maxim, but they're still awesome and getting a little more awesome every year.