Specialized Tools for Specific Applications

January 14, 2019
Specialized Tools for Specific Applications

Carmex Precision Tools Ltd. sees a significant increase in demand for specialized tooling used in unique applications.
According to Jim White, national sales manager for Carmex USA, “The ability of design engineers in leading edge industries to envision complex high-performance parts, coupled with new materials including made-to-order alloys, composites, glass, and ceramics, has resulted in the need for cutting tools that can deliver greater productivity and improved finish.”

While the higher cost normally associated with specialized tooling has in the past been a limiting factor, the high value associated with materials and machining operations on today’s key components have made special tooling increasingly economical in terms of both performance and quality.

White explains, “For roughing operations or more conventional configurations, standard tools are fine, but the effort in trying to define a tool path for a unique design or discovering that off-the-shelf products will neither fit the form nor do the job effectively is leading more and more of our customers to work with us on designing and manufacturing the right tool for the right job.”


Among the challenges recently faced by Carmex engineers is the need for thread milling for fracking pumps. Hostile conditions encountered by the pumps in working with abrasive flows necessitated the development of pump bodies that are extremely expensive due to a protracted hardening process. Jim White comments, “We solved the threading problem with the development of a highly efficient buttress thread mill that generated the desired threads quickly and efficiently.”


A further challenge involved the development of helical milling inserts designed to produce 10 and 28 pitch 60-degree serrations for aerospace chuck jaws and related critical components. “When it comes to high-precision parts, manufacturers are increasingly discovering that customized tooling solutions not only speed cycle times but provide a higher degree of quality assurance,” states White. “A further example involves a series of multi-start Acme turning inserts and holders that speed production of drive nuts and shafts, as well as valve and pump stems and other parts. The fact that Acme threads are less common and standard Acme tooling offers fewer choices resulted in a production bottleneck. The solution is a series of inserts specifically designed to fit the appropriate applications.”

Carmex offers engineering assistance as well as manufacturing capabilities for specialized inserts within their standard size range. Production programs for custom tooling ordered from Carmex are retained so as to speed repeat orders when necessary.
 

Related Glossary Terms

  • abrasive

    abrasive

    Substance used for grinding, honing, lapping, superfinishing and polishing. Examples include garnet, emery, corundum, silicon carbide, cubic boron nitride and diamond in various grit sizes.

  • alloys

    alloys

    Substances having metallic properties and being composed of two or more chemical elements of which at least one is a metal.

  • ceramics

    ceramics

    Cutting tool materials based on aluminum oxide and silicon nitride. Ceramic tools can withstand higher cutting speeds than cemented carbide tools when machining hardened steels, cast irons and high-temperature alloys.

  • chuck

    chuck

    Workholding device that affixes to a mill, lathe or drill-press spindle. It holds a tool or workpiece by one end, allowing it to be rotated. May also be fitted to the machine table to hold a workpiece. Two or more adjustable jaws actually hold the tool or part. May be actuated manually, pneumatically, hydraulically or electrically. See collet.

  • composites

    composites

    Materials composed of different elements, with one element normally embedded in another, held together by a compatible binder.

  • gang cutting ( milling)

    gang cutting ( milling)

    Machining with several cutters mounted on a single arbor, generally for simultaneous cutting.

  • hardening

    hardening

    Process of increasing the surface hardness of a part. It is accomplished by heating a piece of steel to a temperature within or above its critical range and then cooling (or quenching) it rapidly. In any heat-treatment operation, the rate of heating is important. Heat flows from the exterior to the interior of steel at a definite rate. If the steel is heated too quickly, the outside becomes hotter than the inside and the desired uniform structure cannot be obtained. If a piece is irregular in shape, a slow heating rate is essential to prevent warping and cracking. The heavier the section, the longer the heating time must be to achieve uniform results. Even after the correct temperature has been reached, the piece should be held at the temperature for a sufficient period of time to permit its thickest section to attain a uniform temperature. See workhardening.

  • milling

    milling

    Machining operation in which metal or other material is removed by applying power to a rotating cutter. In vertical milling, the cutting tool is mounted vertically on the spindle. In horizontal milling, the cutting tool is mounted horizontally, either directly on the spindle or on an arbor. Horizontal milling is further broken down into conventional milling, where the cutter rotates opposite the direction of feed, or “up” into the workpiece; and climb milling, where the cutter rotates in the direction of feed, or “down” into the workpiece. Milling operations include plane or surface milling, endmilling, facemilling, angle milling, form milling and profiling.

  • milling machine ( mill)

    milling machine ( mill)

    Runs endmills and arbor-mounted milling cutters. Features include a head with a spindle that drives the cutters; a column, knee and table that provide motion in the three Cartesian axes; and a base that supports the components and houses the cutting-fluid pump and reservoir. The work is mounted on the table and fed into the rotating cutter or endmill to accomplish the milling steps; vertical milling machines also feed endmills into the work by means of a spindle-mounted quill. Models range from small manual machines to big bed-type and duplex mills. All take one of three basic forms: vertical, horizontal or convertible horizontal/vertical. Vertical machines may be knee-type (the table is mounted on a knee that can be elevated) or bed-type (the table is securely supported and only moves horizontally). In general, horizontal machines are bigger and more powerful, while vertical machines are lighter but more versatile and easier to set up and operate.

  • pitch

    pitch

    1. On a saw blade, the number of teeth per inch. 2. In threading, the number of threads per inch.

  • quality assurance ( quality control)

    quality assurance ( quality control)

    Terms denoting a formal program for monitoring product quality. The denotations are the same, but QC typically connotes a more traditional postmachining inspection system, while QA implies a more comprehensive approach, with emphasis on “total quality,” broad quality principles, statistical process control and other statistical methods.

  • threading

    threading

    Process of both external (e.g., thread milling) and internal (e.g., tapping, thread milling) cutting, turning and rolling of threads into particular material. Standardized specifications are available to determine the desired results of the threading process. Numerous thread-series designations are written for specific applications. Threading often is performed on a lathe. Specifications such as thread height are critical in determining the strength of the threads. The material used is taken into consideration in determining the expected results of any particular application for that threaded piece. In external threading, a calculated depth is required as well as a particular angle to the cut. To perform internal threading, the exact diameter to bore the hole is critical before threading. The threads are distinguished from one another by the amount of tolerance and/or allowance that is specified. See turning.

  • turning

    turning

    Workpiece is held in a chuck, mounted on a face plate or secured between centers and rotated while a cutting tool, normally a single-point tool, is fed into it along its periphery or across its end or face. Takes the form of straight turning (cutting along the periphery of the workpiece); taper turning (creating a taper); step turning (turning different-size diameters on the same work); chamfering (beveling an edge or shoulder); facing (cutting on an end); turning threads (usually external but can be internal); roughing (high-volume metal removal); and finishing (final light cuts). Performed on lathes, turning centers, chucking machines, automatic screw machines and similar machines.