Technology alters the cutting world

Technology alters the cutting world

CNC machines and programming have changed how cutting tools are made and maintained.

August 17, 2021By Christopher Tate

When I started my career in metalworking 28 years ago, machine shops were in a transformational period. Small shops still relied heavily on conventional machine tools and the skill of the craftspeople who ran them. But CNC machine tools were becoming affordable, and these shops quickly were adopting the technology.

Automation and productivity always have been the most significant attributes of CNC equipment, and they were the primary selling points in the early days. It was multi-axis interpolation, or the ability to drive a cutting tool through curves and angles, that became the foundation of the next series of technological advances. Machine tool builders realized that low-volume shops were an untapped market, so builders started looking for technologies that would be advantageous. Simplified programming was considered a feature that would allow machine tool builders to penetrate the small-shop market. Machine tool builders began introducing technologies like conversational controls and easy-to-use canned cycles, which made programming easier and allowed small shops to transition to CNC machine tools.

Advances in CNC programing also included affordable graphical CAM software that is now common at all types of machine shops. Before the advent of graphics-based CAM packages, programmers would write code by hand, copy and edit existing programs or use complex text-based CAM programs. Advancements in programming have significantly improved productivity and made the creation of complex geometries easy.

These changes in CNC technology profoundly impacted the way that cutting tools were manufactured and how tool and cutter grinding was performed.

When I started programming in 1993, cutting tools were not much different from those of the 1960s. Tools and machines were designed to take deep, heavy, high-horsepower cuts, and complex geometries often were created using form tools. Before CNC machines, form tools were the standard method for creating complex geometries, so their use on the first CNC machines was a natural progression.

Using form tools to generate complex geometries was especially normal for large manufacturers, which frequently had rooms full of tool grinding equipment, along with teams of craftspeople to operate the machinery. Companies that did not make their own tools could easily find local shops that specialized in cutting tools.

Form tools have several benefits. The tools combine operations, reducing cycle times and the number of inputs needed at machines. Most importantly, form tools decrease opportunities for mistakes. But the tools can increase lead times for part introductions, inflate inventory costs and become obsolete with engineering changes.

Market conditions and concepts like lean manufacturing have altered the way that parts are manufactured. The desire to reduce inventory costs has driven reductions in manufacturing lot sizes and demanded lower lead times. Success in these changing conditions requires shops to be agile, and using custom tools can inhibit agility.

As machine tool programming advanced, machine shops began to migrate away from complex form tools. It is now common for engineers and programmers to rely on modern CAM systems that use off-the-shelf cutting tools to create complex geometries. An example is cutting O-ring and lock ring grooves on a lathe. Groove geometry for O-rings and lock rings varies with each part. In the past, a tool would be ground to the exact shape of a groove, making the tool part-specific. It is possible today to use a single indexable tool to make an infinite number of groove shapes through modern programming techniques. This eliminates the need for custom tools, inventory, maintenance costs and the possibility of obsolescence.

CNC advancements modified not only work at the machine shop but the way that cutting tools are manufactured. Before, tool grinding shops both large and small relied on highly skilled craftspeople. The people who make cutting tools are some of the most talented individuals in manufacturing. Tool grinding with conventional machines takes years to master. Craftspeople had to learn how to set up and operate complex tool grinding machines, as well as understand machining, to make tools that would cut well. These workers also had to be proficient with trigonometry and geometry so they could set up machines to create complex shapes.

Old tool and cutter grinding equipment had a number of places to adjust the angle of a tool so it would be presented correctly to the grinding wheel. A tool with multiple steps, angles and radii required numerous setups, all done by hand. Making more than one tool also meant batch processing after each new setup. The work could be very tedious, and a single wrong setup might scrap a whole batch of tools. Additionally, cutting tool designers faced limitations because they had to be careful not to specify geometries outside the capabilities of a grinding machine.

With their advanced programming techniques, CNC tool and cutter grinders revolutionized cutting tool manufacturing. The ability to control multiple axes and program complex grinding paths permitted tool designers to create cutting tool geometries that have challenged milling and turning machine tool builders to keep up.

Advanced endmills are the best example. Over the past few years, there has been an arms race in the cutting tool industry, with toolmakers offering things like variable pitch geometry and variable helix geometry. These advances would have been close to impossible without modern grinding equipment.

Cutting tool companies also have benefited from things like reduced lot sizes, greater flexibility and faster setups. Productivity has been enhanced because one person can tend numerous machines. Multiple setups are less frequent, with most tools being made in one setup and thereby increasing quality. Most substantially, advanced machines have automated the tedious aspects of cutter grinding and allowed toolmakers and engineers to focus on chip formation theory, reducing the lead time of new designs.

Advancements in CNC machines and programming have altered the way that manufacturers make and use cutting tools. Cutting tool manufacture and maintenance for most machine shops now is outsourced to companies that specialize in cutting tools. Engineers and toolmakers are focused on chip formation theory, and grinding machine dynamics are no longer the limiting factor in cutting tool design. The next wave of advances likely will involve cutting tool materials and the abrasive tools used to manufacture them.

Glossary terms in this article

  • cutting tool materials
    Cutting tool materials include cemented carbides, ceramics, cermets, polycrystalline diamond, polycrystalline cubic boron nitride, some grades of tool steels and high-speed steels…
  • lean manufacturing
    Companywide culture of continuous improvement, waste reduction and minimal inventory as practiced by individuals in every aspect of the business.
  • grinding machine
    Powers a grinding wheel or other abrasive tool for the purpose of removing metal and finishing workpieces to close tolerances. Provides smooth, square, parallel and accurate workpi…
  • turning machine
    Any machine that rotates a workpiece while feeding a cutting tool into it. See lathe.
  • grinding wheel
    Wheel formed from abrasive material mixed in a suitable matrix. Takes a variety of shapes but falls into two basic categories: one that cuts on its periphery, as in reciprocating g…
  • interpolation
    Process of generating a sufficient number of positioning commands for the servomotors driving the machine tool so the path of the tool closely approximates the ideal path. See CNC…