E47 Counterboring Insert Geometry

January 13, 2013

Walter has introduced E47, the versatile new counterboring insert geometry designed for use with the Walter BoringMEDIUM and Walter BoringMAXI tooling systems. Key to E47's high precision, process reliability and longer tool life is its excellent chip breaking and removal properties that result from its universal chip groove, positive rake angle, and strong cutting edge with zero°Chamfer, according to the company. Depending on the shape of the insert and its size, depths of cut from 2.5mm up to 6.3mm are no problem.

Chip forming and removal are important in any metalcutting operation but are particularly essential in counterboring, where excellent chip breaking is essential for ensuring the precise cylindricity and accurately formed steps required by subsequent finish machining operations. Though indexable inserts not specifically designed for this operation are often used when counterboring, precision and process reliability tend to suffer. For example, their curved cutting edges can quickly lead to shape deformations when step drilling. However, the straight cutting edge of the new E47 geometry produces precise dimensional accuracy even when step drilling. T

ooling costs are also reduced by the versatility of the new inserts. Aimed mainly at material groups ISO P and K, it also produces superior results with ISO M, ISO S, and with the PVD grades. In addition, though designed primarily for use with the Walter BoringMEDIUM system for drilled holes of 20 to 153mm and the Walter BoringMAXI tooling system for drilled holes of 150 to 640mm, the E47 indexable inserts can also be used in turning operations. This wide range of materials and applications allows users to reduce the number of insert geometries in their inventory, thus reducing costs.

Shapes CC, WC and SC are available in a variety of sizes and with different corner radii. As for grades, users can choose from WSM20 and WSM30 for ISO S, M and P applications, as well as WPP20 for ISO P and K applications.

Related Glossary Terms

  • counterboring

    counterboring

    Enlarging one end of a drilled hole. The enlarged hole, which is concentric with the original hole, is flat on the bottom. Counterboring is used primarily to set bolt heads and nuts below the workpiece surface.

  • metalcutting ( material cutting)

    metalcutting ( material cutting)

    Any machining process used to part metal or other material or give a workpiece a new configuration. Conventionally applies to machining operations in which a cutting tool mechanically removes material in the form of chips; applies to any process in which metal or material is removed to create new shapes. See metalforming.

  • physical vapor deposition ( PVD)

    physical vapor deposition ( PVD)

    Tool-coating process performed at low temperature (500° C), compared to chemical vapor deposition (1,000° C). Employs electric field to generate necessary heat for depositing coating on a tool’s surface. See CVD, chemical vapor deposition.

  • rake

    rake

    Angle of inclination between the face of the cutting tool and the workpiece. If the face of the tool lies in a plane through the axis of the workpiece, the tool is said to have a neutral, or zero, rake. If the inclination of the tool face makes the cutting edge more acute than when the rake angle is zero, the rake is positive. If the inclination of the tool face makes the cutting edge less acute or more blunt than when the rake angle is zero, the rake is negative.

  • tungsten carbide ( WC)

    tungsten carbide ( WC)

    Intermetallic compound consisting of equal parts, by atomic weight, of tungsten and carbon. Sometimes tungsten carbide is used in reference to the cemented tungsten carbide material with cobalt added and/or with titanium carbide or tantalum carbide added. Thus, the tungsten carbide may be used to refer to pure tungsten carbide as well as co-bonded tungsten carbide, which may or may not contain added titanium carbide and/or tantalum carbide.

  • turning

    turning

    Workpiece is held in a chuck, mounted on a face plate or secured between centers and rotated while a cutting tool, normally a single-point tool, is fed into it along its periphery or across its end or face. Takes the form of straight turning (cutting along the periphery of the workpiece); taper turning (creating a taper); step turning (turning different-size diameters on the same work); chamfering (beveling an edge or shoulder); facing (cutting on an end); turning threads (usually external but can be internal); roughing (high-volume metal removal); and finishing (final light cuts). Performed on lathes, turning centers, chucking machines, automatic screw machines and similar machines.

Additional Products from Walter USA LLC

The MC377 Advance, with protective chamfer, corner radii, and center cutting edge, can be used for chrome-nickel and steel materials, as well as titanium. The MD377 Supreme is a solid carbide milling cutter with a corner radius and central internal coolant engineered for titanium machining.

The MC128 Advance boasts a wide diameter range of 1/4 -3/4 in. (2-25 mm) with a TiAIN coating for universal use. WJ30TF grade is available for ISO materials P, M, K, and S. The MC128 Advance is well suited for die and mold work as well as general metalworking. The MD128 Supreme provides 64% more…

With this new tool, V or D-style inserts with just two cutting edges and lower stability (ISO VBMT, VCMT, DCMT) are replaced with triangular cutting inserts with three cutting edges and high stability. These three-edged inserts allow for a 50° undercut angle, ideal for profiling operations. Since…

The Walter MD838 Supreme (conical version) has an effective radius of 250-1000 mm, a corner radius of 0.5 - 4.0 mm and is available in diameters of 6-16 mm. Walter also offers a version of this tool with ConeFit exchangeable head. The MD839 Supreme (tangential version) has an effective radius of…

High tool life is achieved thru WEP10C coated cermet grade with multilayer TiCN TiAlN PVD coating and fine cermet micro grain. The combination of edge preparation and grade also ensures dimensional stability over long periods of time, which boosts productivity in mass production

The unique TiAlN-Al2O3 multilayer coating system makes the WSP45G both hard and tough, and thus extremely resistant to abrasive wear and high temperatures, with controlled residual stresses and less flank wear, all boosting tool life. A special mechanical post-treatment improves hairline crack…

Enhancements to the Xtra·tec XT M5130 milling cutter, including a new clearance angle of 7° have added to this universal tool's existing benefits of high performance, high surface quality, exceptional reliability and safety, and outstanding versatility. The M5130 handles a wide array of…

Accure·tec adaptors are ideally suited for the Walter Xtra·Tec® XT milling cutter range. This makes the system highly versatile. For example, for components with deep cavities in aircraft construction and aerospace industry in general, as well as the automotive, energy, die/mold, and general…

The Xtra·tec XT M5012 is highly cost-effective thanks to inserts being offered in a fully ground configuration for maximum precision, or fully sintered configuration for maximum cost efficiency. The bodies are offered in either ScrewFit or shell mount and with two pitches for different applications.

The M5137 Xtra·tec® XT boasts reduced process costs thanks to its Tiger·tec® coating and six cutting edges per indexable insert. This translates to simple tool selection and low cutting material costs​, and highly cost-effective operation due to low unit costs.

PRODUCTS

11/20/2024
Jorgensen Conveyor and Filtration Solutions, Mequon, Wisconsin, highlighted its distinctive…

10/23/2024
TIN Coated Thread Gages have high dimensionally stable HSS construction with TIN coating that…

10/23/2024
The Starrett AVR400 offers full CNC capabilities including X-Y-Z positioning and comprehensive zoom…