Protodyn Thread Formers

April 12, 2012
Protodyn Thread Formers

Walter USA LLC has introduced the Walter Prototyp Protodyn HSC thread former, a solid carbide tool engineered to boost thread forming cutting speed, productivity and tool life.

The Protodyn HSC provides a thread production process that creates no chips, bird nesting, or chip removal problems, yielding a high level of process reliability even for deep hole and through hole threads. It also has a new micrograin carbide substrate that promotes both superior toughness and wear resistance. This substrate is mated with a hard multilayer TiCN coating that helps make the Protodyn suitable for use in all formable materials, such as steel, stainless steel and aluminum materials with an Si-content of less than 12 percent.

The innovative geometry of the Protodyn HSC also provides additional benefits. It possesses a shank tolerance h6 for use in shrink-fit chucks, and its optimized polygonal form reduces friction and increases tool life, leading to fewer tool changes and an attractive price/performance ratio. Its new chamfer geometry promotes uniform wear. For deeper than normal threads, up to 4xD, the Protodyn (S) HSC version of this new generation solid carbide thread former features axial internal coolant, with cutting speeds that are twice as high as an HSS thread former.

Finally, a another key advantage is that their formed threads' high level of tensile strength, due to cold work hardening of the flanks and profile, yields tough, high quality threads.

Related Glossary Terms

  • coolant

    coolant

    Fluid that reduces temperature buildup at the tool/workpiece interface during machining. Normally takes the form of a liquid such as soluble or chemical mixtures (semisynthetic, synthetic) but can be pressurized air or other gas. Because of water’s ability to absorb great quantities of heat, it is widely used as a coolant and vehicle for various cutting compounds, with the water-to-compound ratio varying with the machining task. See cutting fluid; semisynthetic cutting fluid; soluble-oil cutting fluid; synthetic cutting fluid.

  • cutting speed

    cutting speed

    Tangential velocity on the surface of the tool or workpiece at the cutting interface. The formula for cutting speed (sfm) is tool diameter 5 0.26 5 spindle speed (rpm). The formula for feed per tooth (fpt) is table feed (ipm)/number of flutes/spindle speed (rpm). The formula for spindle speed (rpm) is cutting speed (sfm) 5 3.82/tool diameter. The formula for table feed (ipm) is feed per tooth (ftp) 5 number of tool flutes 5 spindle speed (rpm).

  • hardening

    hardening

    Process of increasing the surface hardness of a part. It is accomplished by heating a piece of steel to a temperature within or above its critical range and then cooling (or quenching) it rapidly. In any heat-treatment operation, the rate of heating is important. Heat flows from the exterior to the interior of steel at a definite rate. If the steel is heated too quickly, the outside becomes hotter than the inside and the desired uniform structure cannot be obtained. If a piece is irregular in shape, a slow heating rate is essential to prevent warping and cracking. The heavier the section, the longer the heating time must be to achieve uniform results. Even after the correct temperature has been reached, the piece should be held at the temperature for a sufficient period of time to permit its thickest section to attain a uniform temperature. See workhardening.

  • high-speed steels ( HSS)

    high-speed steels ( HSS)

    Available in two major types: tungsten high-speed steels (designated by letter T having tungsten as the principal alloying element) and molybdenum high-speed steels (designated by letter M having molybdenum as the principal alloying element). The type T high-speed steels containing cobalt have higher wear resistance and greater red (hot) hardness, withstanding cutting temperature up to 1,100º F (590º C). The type T steels are used to fabricate metalcutting tools (milling cutters, drills, reamers and taps), woodworking tools, various types of punches and dies, ball and roller bearings. The type M steels are used for cutting tools and various types of dies.

  • shank

    shank

    Main body of a tool; the portion of a drill or similar end-held tool that fits into a collet, chuck or similar mounting device.

  • tensile strength

    tensile strength

    In tensile testing, the ratio of maximum load to original cross-sectional area. Also called ultimate strength. Compare with yield strength.

  • titanium carbonitride ( TiCN)

    titanium carbonitride ( TiCN)

    Often used as a tool coating. See coated tools.

  • tolerance

    tolerance

    Minimum and maximum amount a workpiece dimension is allowed to vary from a set standard and still be acceptable.

  • wear resistance

    wear resistance

    Ability of the tool to withstand stresses that cause it to wear during cutting; an attribute linked to alloy composition, base material, thermal conditions, type of tooling and operation and other variables.

Additional Products from Walter USA LLC

Walter has introduced a reduced weight version of its Walter Precision<sup>MEDIUM</sup> B4031.C with the Walter Capto modular toolholding interface.

Walter USA LLC hasenhanced its versatile family of Xtra-tec Insert Drills with the addition of the Walter Capto clamping system and indexable inserts with Tiger-tec Silver cutting tool material.

Walter has extended its range of pilot drills with addition of the X&middot;treme Pilot 180.

Walter has introduced two new indexable insert cartridges for the Walter F2010 facemill.

The tough, versatile, and cost effective new Walter Titex DC150 family of solid-carbide drills brings Walter quality and reliability to the gritty world of everyday machining, where older machines, small quantities, and frequent workpiece changes is the order of the day.

Walter has introduced the Walter Prototyp Supreme TC610 and TC611 solid-carbide thread mills, high performance tools that deliver significant increases in thread quality, milling productivity and process reliability while boosting tool life.

Walter USA LLC has introduced three new Walter Cut GX Tiger-tec Silver CVD grooving and parting grades, the WKP13S, WKP23S and WKP33S, which are being introduced in combination with Walter's provden geometries UD4, UA4, UF4, RD4 and the plunge grooving and parting geometries GD3 and CE4.

Walter has expanded its Tiger-tec Silver range of indexable inserts with three new ISO P geometries, all possessing a positive cutting edge design.

Walter has added additional sizes and designs to its Walter Cut-SX single-edged grooving system for grooving and parting.

Walter USA LLC has introduced the M4000, a universal milling system that improves production while reducing tooling requirements, thus reducing costs.

PRODUCTS

11/20/2024
Jorgensen Conveyor and Filtration Solutions, Mequon, Wisconsin, highlighted its distinctive…

10/23/2024
The Starrett AVR400 offers full CNC capabilities including X-Y-Z positioning and comprehensive zoom…

10/23/2024
TIN Coated Thread Gages have high dimensionally stable HSS construction with TIN coating that…