B4031.C Boring Bar

April 01, 2015
B4031.C Boring Bar

Walter has introduced a reduced weight version of its Walter PrecisionMEDIUM B4031.C with the Walter Capto modular toolholding interface. This single-edged precision boring tool is now available weighing 30-50 percent less than the previous version. While maintaining the same dimensions along with the same properties and performance levels, the new LWS (Light Weight Solution) version weighs just 3.2 kg as opposed to 7.2 kg. Walter is adding the LWS design into its product range with diameters from 90-110mm and 110 to 153mm.

For the user, this offers several advantages, beginning with easier handling for personnel in the assembly and setting area. Also, these light weight tools are particularly beneficial if a machine's tool magazine can accommodate limited weight. The design protects the machine and spindle as there is less weight during acceleration and deceleration.

Likewise, the moment of force is reduced for the same projection lengths, making it easier to change the tool. Due to its special construction, the tool is also more effective at reducing vibration, according to the company. The B4031.C's light weight Walter Capto interface, with its high clamping force and even force distribution, is completely backlash-free.

In addition, it significantly enhances the new tool's versatility. That's because many of today's machine tools include a Capto interface as standard because Capto is a universal interface, suitable for turning, drilling, counterboring and precision boring, as well as for milling, in both rotating and static modes. With this unique interface system, all machining operations can be performed on lathes, machining centers and turn/mill centers.

Related Glossary Terms

  • boring

    boring

    Enlarging a hole that already has been drilled or cored. Generally, it is an operation of truing the previously drilled hole with a single-point, lathe-type tool. Boring is essentially internal turning, in that usually a single-point cutting tool forms the internal shape. Some tools are available with two cutting edges to balance cutting forces.

  • centers

    centers

    Cone-shaped pins that support a workpiece by one or two ends during machining. The centers fit into holes drilled in the workpiece ends. Centers that turn with the workpiece are called “live” centers; those that do not are called “dead” centers.

  • counterboring

    counterboring

    Enlarging one end of a drilled hole. The enlarged hole, which is concentric with the original hole, is flat on the bottom. Counterboring is used primarily to set bolt heads and nuts below the workpiece surface.

  • gang cutting ( milling)

    gang cutting ( milling)

    Machining with several cutters mounted on a single arbor, generally for simultaneous cutting.

  • milling

    milling

    Machining operation in which metal or other material is removed by applying power to a rotating cutter. In vertical milling, the cutting tool is mounted vertically on the spindle. In horizontal milling, the cutting tool is mounted horizontally, either directly on the spindle or on an arbor. Horizontal milling is further broken down into conventional milling, where the cutter rotates opposite the direction of feed, or “up” into the workpiece; and climb milling, where the cutter rotates in the direction of feed, or “down” into the workpiece. Milling operations include plane or surface milling, endmilling, facemilling, angle milling, form milling and profiling.

  • turning

    turning

    Workpiece is held in a chuck, mounted on a face plate or secured between centers and rotated while a cutting tool, normally a single-point tool, is fed into it along its periphery or across its end or face. Takes the form of straight turning (cutting along the periphery of the workpiece); taper turning (creating a taper); step turning (turning different-size diameters on the same work); chamfering (beveling an edge or shoulder); facing (cutting on an end); turning threads (usually external but can be internal); roughing (high-volume metal removal); and finishing (final light cuts). Performed on lathes, turning centers, chucking machines, automatic screw machines and similar machines.

Additional Products from Walter USA LLC

Because of the ground chip breaker on these inserts, the inserts are handed (left hand and right hand insert), but these are standard ISO shapes and sizes- so they are held in conventional ISO turning holders. The inserts also use ‘M’ or maximum material condition tolerance on the corner radii of…

Walter expanded the TC630 Supreme product range to include UNJC4 to UNJC9/16, UNJF4 to UNJF9/16 and MJ3 to MJ10 thread sizes. Optional internal coolant is available for thread sizes starting from MJ4, UNJF8 and UNJC8 to provide effective chip removal on deep threads.

The Paradur® Ti Plus taps are for threading blind holes with a geometry specially developed for machining titanium alloys with a tensile strength of at least 700 N/mm2 using emulsion instead of oil. The Prototex® TiNi Plus tap is effective for through-hole threading. Walter specially developed the…

The M5250 cutter is effective for milling steel, cast iron, stainless steel, aluminum and other non-ferrous metals (ISO P, K, M and N workpiece groups), as well as materials with difficult cutting properties. Unlike other full-effective helical milling cutters, the XTRA∙TEC® XT M5250 can also be…

The TC685 Supreme cutter is a left-hand cutting tool that features a 15° helix angle for excellent chip removal. Cooling with compressed air makes it possible to achieve maximum tool life in materials harder than 50 HRC. Additionally, internal coolant delivery is available for tools that create the…

MA230 Advance milling cutters adapt to most ISO materials and milling approaches. The extensive range includes options like corner radius, corner chamfers, reduced neck, and unequal helix. The helix pitch is meticulously aligned with the number of teeth, ensuring unmatched running smoothness. Your…

The MC166 Advance solid carbide milling cutter with increased core stability compared to a conventional tool core ensures a consistently reliable machining process even in unattended operations. A differential pitch provides optimum operational smoothness and significantly extends tool life.

The holders accept CCGT3xx, DCGT3xx and VCGT2xx indexable inserts and provide a high level of indexing accuracy even when turning parts with tight tolerance specifications. The short head dimension enables short clamping and high stability. The shank dimensions are 12 mm × 12 mm and 16 mm × 16 mm.

With the ability to cut blind-hole threads up to 3.5 × DN, the TC130 Supreme tap is targeted for applications in general mechanical engineering and the energy industry, such as for threading wind turbines. The tap is suitable for threading steel and cast iron (ISO P and K workpiece groups). Also,…

Both WKP01G and WPP05G grades are ideal for continuous cutting and occasional interrupted cuts in high tensile materials (approx. 280-410 HB or 130-200 ksi). Ideal applications include large-scale production of components for the automotive and energy industries, such as gearboxes, gears and rotor…

PRODUCTS

11/20/2024
Jorgensen Conveyor and Filtration Solutions, Mequon, Wisconsin, highlighted its distinctive…

10/23/2024
The Starrett AVR400 offers full CNC capabilities including X-Y-Z positioning and comprehensive zoom…

10/23/2024
TIN Coated Thread Gages have high dimensionally stable HSS construction with TIN coating that…