Walter has introduced WSM01, a premier grade for demanding machining applications. Coupled with Walter’s new MS3 negative geometry, it produces burr-free results with high surface finish quality in the hardest materials.
The WSM01 difference stems from its HIPIMS PVD coating method. Unlike standard PVD coating, which deposits discrete droplets upon the target surface, HiPIMS (High Power Impulse Magnetron Sputtering) PVD coating produces extremely smooth surfaces leading to reduced friction in machining. The new coating is characterized by an excellent layer bonding and thickness distribution, reducing the tendency of "flaking." Extra smooth surface of the coating and extremely sharp cutting edges keep edge build-up to a minimum and ensure high surface finish quality.
This new insert is particularly suitable for machining unstable or thin-walled components. The MS3 insert is equipped with jet-guiding geometry to ensure optimum cooling directly on the cutting edge and is particularly well-suited to copy-turning applications and medium machining applications in aerospace, automotive and general metalworking industries.
The combination of the WSM01 grade’s HiPIMS PVD hard layer and the new MS3 geometry is ideal for machining ISO S materials with difficult cutting properties such as high temperature alloys, titanium alloys, cobalt-based alloys, and nickel-based alloys such as Inconel 718. A secondary application of this new grade is with ISO material groups M (stainless steels), N (nonferrous alloys such as aluminum) and P (steels).
Any manufacturing process in which metal is processed or machined such that the workpiece is given a new shape. Broadly defined, the term includes processes such as design and layout, heat-treating, material handling and inspection.
Tool-coating process performed at low temperature (500° C), compared to chemical vapor deposition (1,000° C). Employs electric field to generate necessary heat for depositing coating on a tool’s surface. See CVD, chemical vapor deposition.
The MC377 Advance, with protective chamfer, corner radii, and center cutting edge, can be used for chrome-nickel and steel materials, as well as titanium. The MD377 Supreme is a solid carbide milling cutter with a corner radius and central internal coolant engineered for titanium machining.
The MC128 Advance boasts a wide diameter range of 1/4 -3/4 in. (2-25 mm) with a TiAIN coating for universal use. WJ30TF grade is available for ISO materials P, M, K, and S. The MC128 Advance is well suited for die and mold work as well as general metalworking. The MD128 Supreme provides 64% more…
With this new tool, V or D-style inserts with just two cutting edges and lower stability (ISO VBMT, VCMT, DCMT) are replaced with triangular cutting inserts with three cutting edges and high stability. These three-edged inserts allow for a 50° undercut angle, ideal for profiling operations. Since…
The Walter MD838 Supreme (conical version) has an effective radius of 250-1000 mm, a corner radius of 0.5 - 4.0 mm and is available in diameters of 6-16 mm. Walter also offers a version of this tool with ConeFit exchangeable head. The MD839 Supreme (tangential version) has an effective radius of…
High tool life is achieved thru WEP10C coated cermet grade with multilayer TiCN TiAlN PVD coating and fine cermet micro grain. The combination of edge preparation and grade also ensures dimensional stability over long periods of time, which boosts productivity in mass production
The unique TiAlN-Al2O3 multilayer coating system makes the WSP45G both hard and tough, and thus extremely resistant to abrasive wear and high temperatures, with controlled residual stresses and less flank wear, all boosting tool life. A special mechanical post-treatment improves hairline crack…
Enhancements to the Xtra·tec XT M5130 milling cutter, including a new clearance angle of 7° have added to this universal tool's existing benefits of high performance, high surface quality, exceptional reliability and safety, and outstanding versatility. The M5130 handles a wide array of…
Accure·tec adaptors are ideally suited for the Walter Xtra·Tec® XT milling cutter range. This makes the system highly versatile. For example, for components with deep cavities in aircraft construction and aerospace industry in general, as well as the automotive, energy, die/mold, and general…
The Xtra·tec XT M5012 is highly cost-effective thanks to inserts being offered in a fully ground configuration for maximum precision, or fully sintered configuration for maximum cost efficiency. The bodies are offered in either ScrewFit or shell mount and with two pitches for different applications.
The M5137 Xtra·tec® XT boasts reduced process costs thanks to its Tiger·tec® coating and six cutting edges per indexable insert. This translates to simple tool selection and low cutting material costs, and highly cost-effective operation due to low unit costs.