AB735 Synchronized Tapping Adaptor

October 07, 2020
Tapping Adaptor Extends Tool Life, Increases Threading Productivity, Reliability

The AB735 synchronized tapping adaptor from Walter compensates for axial movement and pressure during tapping, allowing users to increase threading productivity while increasing tapping tool life. The synchronization of a machine, (i.e., the rotation of the spindle in relation to the feed) is one of the main reasons for tool wear in thread production. With the AB735 Walter offers a flexible solution which minimizes the axial forces that occur during this process. 

The adaptor, which can be used in all common ER collet chucks, also means that fewer number of tools are required. Further, thread flank wear is minimized since these are strained less when chamfering. The sleek, short, compact design also makes it possible to use the adaptor in tight spaces.

More cost-effective than comparable systems but just as easy on tools, the AB735 synchronous threading adaptor maximizes tool performance. In addition to the minimized wear, the modular design of the adaptor also contributes to cost-efficiency: Exchangeable front pieces for different thread sizes or tool diameters (ER16 to ER32) can be used with the same collet. It also fits in virtually all ER adaptors, without requiring further investments.

The low maintenance requirements and high level of process reliability of the adaptor also have additional positive effects, for example, by reducing the risk of breaking the threading tool. Walter offers the quick-change system for all tool types with or without internal coolant. The AB375 accommodates internal coolant of up to 725 psi (50 bar), as well as external coolant supply. It is particularly well suited to applications in the series production of threads and/or applications where lack of synchronization results in a high tool wear rate.

Related Glossary Terms

  • chamfering

    chamfering

    Machining a bevel on a workpiece or tool; improves a tool’s entrance into the cut.

  • collet

    collet

    Flexible-sided device that secures a tool or workpiece. Similar in function to a chuck, but can accommodate only a narrow size range. Typically provides greater gripping force and precision than a chuck. See chuck.

  • coolant

    coolant

    Fluid that reduces temperature buildup at the tool/workpiece interface during machining. Normally takes the form of a liquid such as soluble or chemical mixtures (semisynthetic, synthetic) but can be pressurized air or other gas. Because of water’s ability to absorb great quantities of heat, it is widely used as a coolant and vehicle for various cutting compounds, with the water-to-compound ratio varying with the machining task. See cutting fluid; semisynthetic cutting fluid; soluble-oil cutting fluid; synthetic cutting fluid.

  • flank wear

    flank wear

    Reduction in clearance on the tool’s flank caused by contact with the workpiece. Ultimately causes tool failure.

  • modular design ( modular construction)

    modular design ( modular construction)

    Manufacturing of a product in subassemblies that permits fast and simple replacement of defective assemblies and tailoring of the product for different purposes. See interchangeable parts.

  • tapping

    tapping

    Machining operation in which a tap, with teeth on its periphery, cuts internal threads in a predrilled hole having a smaller diameter than the tap diameter. Threads are formed by a combined rotary and axial-relative motion between tap and workpiece. See tap.

  • threading

    threading

    Process of both external (e.g., thread milling) and internal (e.g., tapping, thread milling) cutting, turning and rolling of threads into particular material. Standardized specifications are available to determine the desired results of the threading process. Numerous thread-series designations are written for specific applications. Threading often is performed on a lathe. Specifications such as thread height are critical in determining the strength of the threads. The material used is taken into consideration in determining the expected results of any particular application for that threaded piece. In external threading, a calculated depth is required as well as a particular angle to the cut. To perform internal threading, the exact diameter to bore the hole is critical before threading. The threads are distinguished from one another by the amount of tolerance and/or allowance that is specified. See turning.

Additional Products from Walter USA LLC

WCH10C inserts deliver high repeat accuracy due to its sintering process and are tough and wear resistant due to the strong connection to their titanium carbide substrate. Optimum surface quality is promoted as well by their uniform grain distribution in the substrate, The new Walter coated mixed…

The Xtra·Tec XT M5468 provides protection against twisting and cutting-edge rotation due to the eight facets on its indexable inserts. It also yields maximum productivity thanks to its ability to support optimum cutting data and promote long tool life, as well as maximum process stability due to…

The WHH15X grade features HIPIMS technology for excellent coating adhesion and a high degree of hardness, and AlTiN coating optimized for hard machining; this results in an extremely smooth surface for the best chip removal and high surface quality. This new grade also has an extremely wear-…

The TC430 Supreme thread former, specialized for ISO P materials, is for blind-hole and through-hole threads up to 3.5 x DN. Multiple coolant configurations are offered to best optimize performance—axial or radial coolant, with or without lubrication grooves. This HSS-E-PM thread former with AlCrN…

The TC420 Supreme includes one configuration with chamfer form E, (M5–M16) for blind-hole threads up to  3.5 × DN, which uses an innovative combination of chamfer form E with axial internal coolant and without lubrication grooves. This new combination also improves the lubrication and, at the same…

The new cylindrical modular interface makes it easy to change existing copy, chamfer and shoulder milling tools, with no need to invest in new adaptors. It is easy to assemble and dismantle. Plus, the cylindrical centering reduces runout while providing a support face for good stability. Thanks to…

The FW5 wiper geometries, with a new wiper curved cutting edge and V chip formation for short chips, can also be used on components with long overhangs thanks to the reduced cutting pressure. In addition, the MW5, with its longer cutting edge, is suitable for the highest feeds. The FW5 and MW5 are…

The P6006 insert can perform up to 10 x Dc without the need for a pilot drill. It features a protective chamfer on the insert with HIPIMS-PVD coating, and the wear resistant WPP25 grade which leads to maximum tool life in stable conditions. Further, the insert has a 100° prism for the contact point…

Walter's T2710 indexable thread milling cutter can be used universally in steels, stainless steels, cast iron, non-ferrous metals, high-temperature alloys, and hardened steels up to 55 HRC. It machines threads with nominal diameter from 0.79 in. (20 mm), and pitch range of 1.5 - 6 mm/18-6 TPI…

This innovative insert seating substantially eliminates the tendency for vibrations, increasing insert life as well as tool holder life. The design also prevents incorrect engagement, especially for narrow insert widths, and enables an extremely high indexing accuracy. Elevated protective edge is…

PRODUCTS

11/20/2024
Jorgensen Conveyor and Filtration Solutions, Mequon, Wisconsin, highlighted its distinctive…

10/23/2024
TIN Coated Thread Gages have high dimensionally stable HSS construction with TIN coating that…

10/23/2024
The Starrett AVR400 offers full CNC capabilities including X-Y-Z positioning and comprehensive zoom…