E47 Counterboring Insert Geometry

January 13, 2013

Walter has introduced E47, the versatile new counterboring insert geometry designed for use with the Walter BoringMEDIUM and Walter BoringMAXI tooling systems. Key to E47's high precision, process reliability and longer tool life is its excellent chip breaking and removal properties that result from its universal chip groove, positive rake angle, and strong cutting edge with zero°Chamfer, according to the company. Depending on the shape of the insert and its size, depths of cut from 2.5mm up to 6.3mm are no problem.

Chip forming and removal are important in any metalcutting operation but are particularly essential in counterboring, where excellent chip breaking is essential for ensuring the precise cylindricity and accurately formed steps required by subsequent finish machining operations. Though indexable inserts not specifically designed for this operation are often used when counterboring, precision and process reliability tend to suffer. For example, their curved cutting edges can quickly lead to shape deformations when step drilling. However, the straight cutting edge of the new E47 geometry produces precise dimensional accuracy even when step drilling. T

ooling costs are also reduced by the versatility of the new inserts. Aimed mainly at material groups ISO P and K, it also produces superior results with ISO M, ISO S, and with the PVD grades. In addition, though designed primarily for use with the Walter BoringMEDIUM system for drilled holes of 20 to 153mm and the Walter BoringMAXI tooling system for drilled holes of 150 to 640mm, the E47 indexable inserts can also be used in turning operations. This wide range of materials and applications allows users to reduce the number of insert geometries in their inventory, thus reducing costs.

Shapes CC, WC and SC are available in a variety of sizes and with different corner radii. As for grades, users can choose from WSM20 and WSM30 for ISO S, M and P applications, as well as WPP20 for ISO P and K applications.

Related Glossary Terms

  • counterboring

    counterboring

    Enlarging one end of a drilled hole. The enlarged hole, which is concentric with the original hole, is flat on the bottom. Counterboring is used primarily to set bolt heads and nuts below the workpiece surface.

  • metalcutting ( material cutting)

    metalcutting ( material cutting)

    Any machining process used to part metal or other material or give a workpiece a new configuration. Conventionally applies to machining operations in which a cutting tool mechanically removes material in the form of chips; applies to any process in which metal or material is removed to create new shapes. See metalforming.

  • physical vapor deposition ( PVD)

    physical vapor deposition ( PVD)

    Tool-coating process performed at low temperature (500° C), compared to chemical vapor deposition (1,000° C). Employs electric field to generate necessary heat for depositing coating on a tool’s surface. See CVD, chemical vapor deposition.

  • rake

    rake

    Angle of inclination between the face of the cutting tool and the workpiece. If the face of the tool lies in a plane through the axis of the workpiece, the tool is said to have a neutral, or zero, rake. If the inclination of the tool face makes the cutting edge more acute than when the rake angle is zero, the rake is positive. If the inclination of the tool face makes the cutting edge less acute or more blunt than when the rake angle is zero, the rake is negative.

  • tungsten carbide ( WC)

    tungsten carbide ( WC)

    Intermetallic compound consisting of equal parts, by atomic weight, of tungsten and carbon. Sometimes tungsten carbide is used in reference to the cemented tungsten carbide material with cobalt added and/or with titanium carbide or tantalum carbide added. Thus, the tungsten carbide may be used to refer to pure tungsten carbide as well as co-bonded tungsten carbide, which may or may not contain added titanium carbide and/or tantalum carbide.

  • turning

    turning

    Workpiece is held in a chuck, mounted on a face plate or secured between centers and rotated while a cutting tool, normally a single-point tool, is fed into it along its periphery or across its end or face. Takes the form of straight turning (cutting along the periphery of the workpiece); taper turning (creating a taper); step turning (turning different-size diameters on the same work); chamfering (beveling an edge or shoulder); facing (cutting on an end); turning threads (usually external but can be internal); roughing (high-volume metal removal); and finishing (final light cuts). Performed on lathes, turning centers, chucking machines, automatic screw machines and similar machines.

Additional Products from Walter USA LLC

The RM5 stainless steel roughing geometry from Walter USA LLC features guided twin-channel coolant targeted at the chip. This provides maximum cooling and enhanced tool life for machining ISO M stainless steels and ISO S high-temperature alloys, according to the company.

The aim of the Perform drill line is to offer customers the same outstanding Walter quality they have come to expect, but without having to pay for a level of performance that offers them no benefits at all. The DC150 Perform affords significant advantages primarily where users need to machine…

The new M2131 Sky·tec Ramping Cutter from Walter reportedly brings new, higher levels of process reliability to the machining of nonferrous metals such as the aluminum wrought alloys or aluminum lithium alloys often used in aircraft structural components. The cutter allows shorter machining time…

Walter says its double-sided ISO indexable inserts with RP7 geometry provide maximum process reliability in rough turning by combining a ground contact surface with an optimized profile that has a tailored protective chamfer to guard against fracturing. The RP7 benefits from a new design that…

Walter has announced the addition of the M4256, M4257 and M4258 high-performance helical milling cutters to its M4000 family. The M4000 program offers the advantages of a system insert concept that allows one insert style to be used in a variety of tools, permitting a wide array of milling…

The WDN10 from Walter, a high-performance and wear-resistant polycrystalline diamond (PCD) insert delivers outstanding hardness, a low coefficient of friction and minimum heat distortion. This helps result in maximum productivity and cost efficiency in the high-speed machining of nonferrous…

Walter has introduced the Walter BLAXX M3016, a heavy-duty milling cutter with the ruggedness and power needed to make heavy cuts seem easy. The M3016 tackles ISO material groups P, M and K, and difficult applications such as machining frames made from cast iron for large molds, or housings for…

Walter has introduced the Tiger·tec Silver grade WSM45X, creating an indexable inserts with high-temperature resistance, improved wear resistance, outstanding toughness, and exceptional hardness. These key features of inserts in the new Tiger·tec Silver grade WSM45X can boost performance by up to…

What if your tools could talk to you, providing you with timely information about their status and the conditions they were encountering, as well as tips that enhance your specific application? With Walter’s new wear-optimization app, they can.

Walter has introduced the Walter Titex DB133 Supreme, a solid-carbide microdrill that reportedly delivers tight tolerances, high-quality surface finishes, superior process reliability and longer tool life. The difference for the DB133 Supreme begins with the use of grades WJ30EL and WJ30ER,…

PRODUCTS

11/20/2024
Jorgensen Conveyor and Filtration Solutions, Mequon, Wisconsin, highlighted its distinctive…

10/23/2024
The Starrett AVR400 offers full CNC capabilities including X-Y-Z positioning and comprehensive zoom…

10/23/2024
TIN Coated Thread Gages have high dimensionally stable HSS construction with TIN coating that…