Epoch Deep Evolution Endmills

February 12, 2012

Hitachi Tool has recently introduced their new Epoch Deep Evolution Series End Mills designed for high-precision and high-speed milling of deep rib grooves, walls, slots and corners. These new small diameter square nose and ball nose end mills feature an under neck length of up to 20xD, making them ideal for deep milling applications.

The new compound neck shape of the Epoch Deep Evolution Series provides improved breakage resistance and suppresses deflection during deep milling. Available in sizes from 0.1 to 6.0mm, these new end mills feature improved diameter and radius tolerances, providing very high part accuracy in finish machining.

The ball end mills feature a high-strength flute shape for improved chip removal, and a stronger flute helix angle further improves cutting performance. The square end mills incorporate a new flute shape for improved cutting stability.

The Epoch Deep Evolution Series features two of Hitachi Tool's newest cutting tool coatings. The first is the ATH Coating, a multi-layered heat resistant coating with a hardness of 3800HV, compared to 2800HV of the industry-standard TiAlN coating. The ATH coated end mills provide excellent performance in materials up to 65HRC, and can mill hardened steels that are traditionally machined by EDM (electrical discharge machining).

The second new coating is Hitachi Tool's PN Coating, a heat-resistant coating that combines excellent tool adhesion and wear resistance. The surface layer has improved lubricity, providing long cutting tool life in copper, carbon steels, alloy steels, stainless steels and pre-hardened steels up to 45HRC.

Related Glossary Terms

  • alloy steels

    alloy steels

    Steel containing specified quantities of alloying elements (other than carbon and the commonly accepted amounts of manganese, sulfur and phosphorus) added to cause changes in the metal’s mechanical and/or physical properties. Principal alloying elements are nickel, chromium, molybdenum and silicon. Some grades of alloy steels contain one or more of these elements: vanadium, boron, lead and copper.

  • carbon steels

    carbon steels

    Known as unalloyed steels and plain carbon steels. Contains, in addition to iron and carbon, manganese, phosphorus and sulfur. Characterized as low carbon, medium carbon, high carbon and free machining.

  • electrical-discharge machining ( EDM)

    electrical-discharge machining ( EDM)

    Process that vaporizes conductive materials by controlled application of pulsed electrical current that flows between a workpiece and electrode (tool) in a dielectric fluid. Permits machining shapes to tight accuracies without the internal stresses conventional machining often generates. Useful in diemaking.

  • gang cutting ( milling)

    gang cutting ( milling)

    Machining with several cutters mounted on a single arbor, generally for simultaneous cutting.

  • hardness

    hardness

    Hardness is a measure of the resistance of a material to surface indentation or abrasion. There is no absolute scale for hardness. In order to express hardness quantitatively, each type of test has its own scale, which defines hardness. Indentation hardness obtained through static methods is measured by Brinell, Rockwell, Vickers and Knoop tests. Hardness without indentation is measured by a dynamic method, known as the Scleroscope test.

  • helix angle

    helix angle

    Angle that the tool’s leading edge makes with the plane of its centerline.

  • lubricity

    lubricity

    Measure of the relative efficiency with which a cutting fluid or lubricant reduces friction between surfaces.

  • milling

    milling

    Machining operation in which metal or other material is removed by applying power to a rotating cutter. In vertical milling, the cutting tool is mounted vertically on the spindle. In horizontal milling, the cutting tool is mounted horizontally, either directly on the spindle or on an arbor. Horizontal milling is further broken down into conventional milling, where the cutter rotates opposite the direction of feed, or “up” into the workpiece; and climb milling, where the cutter rotates in the direction of feed, or “down” into the workpiece. Milling operations include plane or surface milling, endmilling, facemilling, angle milling, form milling and profiling.

  • milling machine ( mill)

    milling machine ( mill)

    Runs endmills and arbor-mounted milling cutters. Features include a head with a spindle that drives the cutters; a column, knee and table that provide motion in the three Cartesian axes; and a base that supports the components and houses the cutting-fluid pump and reservoir. The work is mounted on the table and fed into the rotating cutter or endmill to accomplish the milling steps; vertical milling machines also feed endmills into the work by means of a spindle-mounted quill. Models range from small manual machines to big bed-type and duplex mills. All take one of three basic forms: vertical, horizontal or convertible horizontal/vertical. Vertical machines may be knee-type (the table is mounted on a knee that can be elevated) or bed-type (the table is securely supported and only moves horizontally). In general, horizontal machines are bigger and more powerful, while vertical machines are lighter but more versatile and easier to set up and operate.

  • stainless steels

    stainless steels

    Stainless steels possess high strength, heat resistance, excellent workability and erosion resistance. Four general classes have been developed to cover a range of mechanical and physical properties for particular applications. The four classes are: the austenitic types of the chromium-nickel-manganese 200 series and the chromium-nickel 300 series; the martensitic types of the chromium, hardenable 400 series; the chromium, nonhardenable 400-series ferritic types; and the precipitation-hardening type of chromium-nickel alloys with additional elements that are hardenable by solution treating and aging.

  • titanium aluminum nitride ( TiAlN)

    titanium aluminum nitride ( TiAlN)

    Often used as a tool coating. AlTiN indicates the aluminum content is greater than the titanium. See coated tools.

  • wear resistance

    wear resistance

    Ability of the tool to withstand stresses that cause it to wear during cutting; an attribute linked to alloy composition, base material, thermal conditions, type of tooling and operation and other variables.

PRODUCTS

06/24/2024
Vargus, a global leader in threading, grooving, and deburring solutions, proudly introduces the FS…

06/12/2024
Currently available for Kyocera’s popular GBA external and SIGE internal grooving systems, the new…

06/12/2024
The jaws of the exceptional Bench Vise swivel 360° on the base and can lock in any position. Its…