Cermet WEP10 Indexable Turning Inserts

July 30, 2018
Cermet WEP10 Indexable Turning Inserts

The new Cermet WEP10 indexable turning inserts from Walter deliver long tool life and high productivity. Their fine-grain titanium carbide substrate with Ni/Co binder produces a stable cutting edge. Combined with an extremely hard TiCN outer layer, this grade provides multiple advantages during finishing operations when compared to carbide inserts.

These advantages include increased tool life due to its high wear resistance, no necessity for readjustments, and maximum dimensional accuracy. In addition, Cermet WEP10’s FP4 soft-cutting insert geometry is suitable for finishing a range of different materials. The FP4 geometry, with its unique edge preparation is capable of yielding mirror finish surfaces at high or low cutting speeds. A variety of insert shapes are available.

Application areas for the new Walter Cermet WEP10 include finishing operations with continuous or slightly interrupted cut in steels, stainless steels and cast-iron workpieces. Targeted industries can be general metalworking, mechanical engineering, energy and the automotive industries.

Related Glossary Terms

  • edge preparation

    edge preparation

    Conditioning of the cutting edge, such as a honing or chamfering, to make it stronger and less susceptible to chipping. A chamfer is a bevel on the tool’s cutting edge; the angle is measured from the cutting face downward and generally varies from 25° to 45°. Honing is the process of rounding or blunting the cutting edge with abrasives, either manually or mechanically.

  • interrupted cut

    interrupted cut

    Cutting tool repeatedly enters and exits the work. Subjects tool to shock loading, making tool toughness, impact strength and flexibility vital. Closely associated with milling operations. See shock loading.

  • metalworking

    metalworking

    Any manufacturing process in which metal is processed or machined such that the workpiece is given a new shape. Broadly defined, the term includes processes such as design and layout, heat-treating, material handling and inspection.

  • stainless steels

    stainless steels

    Stainless steels possess high strength, heat resistance, excellent workability and erosion resistance. Four general classes have been developed to cover a range of mechanical and physical properties for particular applications. The four classes are: the austenitic types of the chromium-nickel-manganese 200 series and the chromium-nickel 300 series; the martensitic types of the chromium, hardenable 400 series; the chromium, nonhardenable 400-series ferritic types; and the precipitation-hardening type of chromium-nickel alloys with additional elements that are hardenable by solution treating and aging.

  • titanium carbide ( TiC)

    titanium carbide ( TiC)

    Extremely hard material added to tungsten carbide to reduce cratering and built-up edge. Also used as a tool coating. See coated tools.

  • titanium carbonitride ( TiCN)

    titanium carbonitride ( TiCN)

    Often used as a tool coating. See coated tools.

  • turning

    turning

    Workpiece is held in a chuck, mounted on a face plate or secured between centers and rotated while a cutting tool, normally a single-point tool, is fed into it along its periphery or across its end or face. Takes the form of straight turning (cutting along the periphery of the workpiece); taper turning (creating a taper); step turning (turning different-size diameters on the same work); chamfering (beveling an edge or shoulder); facing (cutting on an end); turning threads (usually external but can be internal); roughing (high-volume metal removal); and finishing (final light cuts). Performed on lathes, turning centers, chucking machines, automatic screw machines and similar machines.

  • wear resistance

    wear resistance

    Ability of the tool to withstand stresses that cause it to wear during cutting; an attribute linked to alloy composition, base material, thermal conditions, type of tooling and operation and other variables.

Additional Products from Walter USA LLC

Because of the ground chip breaker on these inserts, the inserts are handed (left hand and right hand insert), but these are standard ISO shapes and sizes- so they are held in conventional ISO turning holders. The inserts also use ‘M’ or maximum material condition tolerance on the corner radii of…

Walter expanded the TC630 Supreme product range to include UNJC4 to UNJC9/16, UNJF4 to UNJF9/16 and MJ3 to MJ10 thread sizes. Optional internal coolant is available for thread sizes starting from MJ4, UNJF8 and UNJC8 to provide effective chip removal on deep threads.

The Paradur® Ti Plus taps are for threading blind holes with a geometry specially developed for machining titanium alloys with a tensile strength of at least 700 N/mm2 using emulsion instead of oil. The Prototex® TiNi Plus tap is effective for through-hole threading. Walter specially developed the…

The M5250 cutter is effective for milling steel, cast iron, stainless steel, aluminum and other non-ferrous metals (ISO P, K, M and N workpiece groups), as well as materials with difficult cutting properties. Unlike other full-effective helical milling cutters, the XTRA∙TEC® XT M5250 can also be…

The TC685 Supreme cutter is a left-hand cutting tool that features a 15° helix angle for excellent chip removal. Cooling with compressed air makes it possible to achieve maximum tool life in materials harder than 50 HRC. Additionally, internal coolant delivery is available for tools that create the…

MA230 Advance milling cutters adapt to most ISO materials and milling approaches. The extensive range includes options like corner radius, corner chamfers, reduced neck, and unequal helix. The helix pitch is meticulously aligned with the number of teeth, ensuring unmatched running smoothness. Your…

The MC166 Advance solid carbide milling cutter with increased core stability compared to a conventional tool core ensures a consistently reliable machining process even in unattended operations. A differential pitch provides optimum operational smoothness and significantly extends tool life.

The holders accept CCGT3xx, DCGT3xx and VCGT2xx indexable inserts and provide a high level of indexing accuracy even when turning parts with tight tolerance specifications. The short head dimension enables short clamping and high stability. The shank dimensions are 12 mm × 12 mm and 16 mm × 16 mm.

With the ability to cut blind-hole threads up to 3.5 × DN, the TC130 Supreme tap is targeted for applications in general mechanical engineering and the energy industry, such as for threading wind turbines. The tap is suitable for threading steel and cast iron (ISO P and K workpiece groups). Also,…

Both WKP01G and WPP05G grades are ideal for continuous cutting and occasional interrupted cuts in high tensile materials (approx. 280-410 HB or 130-200 ksi). Ideal applications include large-scale production of components for the automotive and energy industries, such as gearboxes, gears and rotor…

PRODUCTS

11/20/2024
Jorgensen Conveyor and Filtration Solutions, Mequon, Wisconsin, highlighted its distinctive…

10/23/2024
The Starrett AVR400 offers full CNC capabilities including X-Y-Z positioning and comprehensive zoom…

10/23/2024
TIN Coated Thread Gages have high dimensionally stable HSS construction with TIN coating that…