Accure·tec AC001 Vibration Damping Adaptor

January 27, 2021
Vibration-Free Milling When Using Long Tools

Walter has introduced the Accure·tec AC001 vibration damping adaptor especially for shell mill mount milling cutters. It delivers increased productivity and stability along with greater surface quality, improved tool and spindle life and is ideal for deep pocket milling in operations at depths of up to 4 x D. 

The vibration damping for this patented system is provided by the axially and radially flexible positioned damper element which is preset at the factory so tools can be used immediately without time-wasting fine tuning. These Accure·tec adaptors are ideally suited for the Walter Xtra·Tec® XT milling cutter range. This makes the system highly versatile. For example, for components with deep cavities in aircraft construction and aerospace industry in general, as well as the automotive, energy, die/mold, and general metalworking industries. Users can benefit from both the vibration damping and a system with low noise levels. 

Accure·tec delivers its advantages of longer tool life, higher productivity, and greater process reliability at depths of cut up to three

times that obtained with conventional methods. Internal coolant further optimizes chip removal. Walter offers Accure·tec with all popular machine interfaces: Walter Capto™, HSK/HSK-T, ISO, MAS-BT, CAT and parallel shank.                                                               

In addition, Walter has announced new sizes to its existing Accure∙tec A3000 boring bar line that incorporates the same technology as the AC001 vibration free long milling tool adaptor. The A3000 is now available in 1.00 in. and 25 mm diameters in steel, as well as 1.00 in. and 1.25 in. diameters in carbide at 10 x Dc. The product extension also includes Capto C4, C5 connections in 25 mm diameter along with HSK-T63 connections in 25, 32, 40, 50 mm diameters. 

Related Glossary Terms

  • boring

    boring

    Enlarging a hole that already has been drilled or cored. Generally, it is an operation of truing the previously drilled hole with a single-point, lathe-type tool. Boring is essentially internal turning, in that usually a single-point cutting tool forms the internal shape. Some tools are available with two cutting edges to balance cutting forces.

  • boring bar

    boring bar

    Essentially a cantilever beam that holds one or more cutting tools in position during a boring operation. Can be held stationary and moved axially while the workpiece revolves around it, or revolved and moved axially while the workpiece is held stationary, or a combination of these actions. Installed on milling, drilling and boring machines, as well as lathes and machining centers.

  • coolant

    coolant

    Fluid that reduces temperature buildup at the tool/workpiece interface during machining. Normally takes the form of a liquid such as soluble or chemical mixtures (semisynthetic, synthetic) but can be pressurized air or other gas. Because of water’s ability to absorb great quantities of heat, it is widely used as a coolant and vehicle for various cutting compounds, with the water-to-compound ratio varying with the machining task. See cutting fluid; semisynthetic cutting fluid; soluble-oil cutting fluid; synthetic cutting fluid.

  • gang cutting ( milling)

    gang cutting ( milling)

    Machining with several cutters mounted on a single arbor, generally for simultaneous cutting.

  • metalworking

    metalworking

    Any manufacturing process in which metal is processed or machined such that the workpiece is given a new shape. Broadly defined, the term includes processes such as design and layout, heat-treating, material handling and inspection.

  • milling

    milling

    Machining operation in which metal or other material is removed by applying power to a rotating cutter. In vertical milling, the cutting tool is mounted vertically on the spindle. In horizontal milling, the cutting tool is mounted horizontally, either directly on the spindle or on an arbor. Horizontal milling is further broken down into conventional milling, where the cutter rotates opposite the direction of feed, or “up” into the workpiece; and climb milling, where the cutter rotates in the direction of feed, or “down” into the workpiece. Milling operations include plane or surface milling, endmilling, facemilling, angle milling, form milling and profiling.

  • milling cutter

    milling cutter

    Loosely, any milling tool. Horizontal cutters take the form of plain milling cutters, plain spiral-tooth cutters, helical cutters, side-milling cutters, staggered-tooth side-milling cutters, facemilling cutters, angular cutters, double-angle cutters, convex and concave form-milling cutters, straddle-sprocket cutters, spur-gear cutters, corner-rounding cutters and slitting saws. Vertical cutters use shank-mounted cutting tools, including endmills, T-slot cutters, Woodruff keyseat cutters and dovetail cutters; these may also be used on horizontal mills. See milling.

  • milling machine ( mill)

    milling machine ( mill)

    Runs endmills and arbor-mounted milling cutters. Features include a head with a spindle that drives the cutters; a column, knee and table that provide motion in the three Cartesian axes; and a base that supports the components and houses the cutting-fluid pump and reservoir. The work is mounted on the table and fed into the rotating cutter or endmill to accomplish the milling steps; vertical milling machines also feed endmills into the work by means of a spindle-mounted quill. Models range from small manual machines to big bed-type and duplex mills. All take one of three basic forms: vertical, horizontal or convertible horizontal/vertical. Vertical machines may be knee-type (the table is mounted on a knee that can be elevated) or bed-type (the table is securely supported and only moves horizontally). In general, horizontal machines are bigger and more powerful, while vertical machines are lighter but more versatile and easier to set up and operate.

  • parallel

    parallel

    Strip or block of precision-ground stock used to elevate a workpiece, while keeping it parallel to the worktable, to prevent cutter/table contact.

  • shank

    shank

    Main body of a tool; the portion of a drill or similar end-held tool that fits into a collet, chuck or similar mounting device.

Additional Products from Walter USA LLC

The DA110 Perform drill from Walter can be used universally and cost-effectively for a wide range of materials. It delivers maximum accuracy thanks to its precision-ground surfaces and a tip geometry that has been engineered for optimum centering accuracy, while keeping production costs as a…

The M4258 modular helical milling cutter from Walter, the most recent addition to its M4000 family of high-performance helical milling cutters, brings cost efficiency and excellent process reliability to slot milling, and can be used for ramping, pocket milling, shoulder milling and circular…

The new versatile high-performance TC420 Supreme thread former from Walter features a new substrate and a new polygon geometry that provides better forming behavior, less friction and longer tool life. In addition, its polished surface yields a better surface finish than is achieved with thread…

Walter has introduced the new A60 and AG60 inserts for small to medium pitch threads. Just like the existing MX geometries (CF5 and GD8 for grooving and parting, RF5 for grooving and copy turning), the new MX geometries A60/AG60 provide long tool life, fine surface quality and process reliability.…

The new Cermet WEP10 indexable turning inserts from Walter deliver long tool life and high productivity. Their fine-grain titanium carbide substrate with Ni/Co binder produces a stable cutting edge. Combined with an extremely hard TiCN outer layer, this grade provides multiple advantages during…

Walter has introduced WSM01, a premier grade for demanding machining applications. Coupled with Walter’s new MS3 negative geometry, it produces burr-free results with high surface finish quality in the hardest materials.

The versatile new DC160 Advance solid-carbide drill from Walter delivers high productivity in a wide variety of materials and can be used universally in an extremely broad range of applications. The newly designed drill offers many advantages. The margins are located in an advanced forward position…

Walter has introduced the D4140 indexable insert drill, a tough and versatile new drill that delivers enhanced process reliability and extended tool life. The D4140 advantage stems from its design and construction, featuring a hardened and polished surface that offers exceptional resistance to…

Walter has introduced the Walter Prototyp ceramic milling cutters MC275/MC075. These two new tools deliver significantly increased productivity, cutting speeds and high metal-removal rates in the machining of nickel-based alloys.

Walter has introduced the DB130 Advance, its smallest solid-carbide microdrill with diameters from 0.004 to 0.06 in. (0.1 mm to 1.45 mm). With a point angle of 118° and cylindrical shank, the drill meets DIN 1899 standards.

PRODUCTS

11/20/2024
Jorgensen Conveyor and Filtration Solutions, Mequon, Wisconsin, highlighted its distinctive…

10/23/2024
The Starrett AVR400 offers full CNC capabilities including X-Y-Z positioning and comprehensive zoom…

10/23/2024
TIN Coated Thread Gages have high dimensionally stable HSS construction with TIN coating that…